elliptic curve cryptosystem - tradução para russo
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:     

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

elliptic curve cryptosystem - tradução para russo

ALGORITHM FOR INTEGER FACTORIZATION
Lenstra Elliptic Curve Factorization; Elliptic curve method; Elliptic curve factorization; Elliptic Curve Factorization Method; Elliptic curve factorization method; Elliptic curve factorisation; Lenstra elliptic curve factorization; Lenstra's ECM

elliptic curve cryptosystem      
криптосистема на основе эллиптических кривых криптосистема на основе эллиптических кривых
elliptic-curve cryptography         
APPROACH TO PUBLIC-KEY CRYPTOGRAPHY BASED ON THE ALGEBRAIC STRUCTURE OF ELLIPTIC CURVES OVER FINITE FIELDS
Elliptical Curve Cryptography; Elliptic Curve Cryptography; Elliptical curve cryptography; Elliptic curve discrete logarithm problem; ECDLP; Elliptic curve cryptography (ECC); Parabolic encryption; Parabolic cryptography; ECC Brainpool; Elliptic-curve discrete logarithm problem; Elliptic Curve Discrete Logarithm Problem; Elliptic curve cryptography; P-224; P-256; P-521; NIST Curve; NIST Curves; NIST P-256; NIST P-224; NIST P-521; NIST Elliptic-curve; NIST Elliptic-curves; ECC Curves; ECC Curve

общая лексика

ECC

шифрование в эллиптических кривых, криптография на эллиптических кривых

быстро развивающееся направление асимметричного шифрования и ЭЦП. В ECC все вычисления производятся над точками эллиптической кривой, т.е., вместо обычного сложения двух чисел выполняется по определенным правилам сложение двух точек кривой, при этом в качестве результата получается третья точка

Смотрите также

cryptography

elliptic curve         
  • Set of affine points of elliptic curve ''y''<sup>2</sup> = ''x''<sup>3</sup> − ''x'' over finite field '''F'''<sub>61</sub>.
  • Set of affine points of elliptic curve ''y''<sup>2</sup> = ''x''<sup>3</sup> − ''x'' over finite field '''F'''<sub>71</sub>.
  • Set of affine points of elliptic curve ''y''<sup>2</sup> = ''x''<sup>3</sup> − ''x'' over finite field '''F'''<sub>89</sub>.
AN ALGEBRAIC CURVE OF GENUS 1 EQUIPPED WITH A BASEPOINT
Elliptical curve; Elliptic curves; Weierstrass form; Elliptic Equation; Weierstrass equation; Elliptic Curve; Elliptic Curves; Eliptic curve; Discriminant of an elliptic curve; Weierstrass normal form

математика

эллиптическая кривая

Definição

Bezier curve
<graphics> A type of curve defined by mathematical formulae, used in computer graphics. A curve with coordinates P(u), where u varies from 0 at one end of the curve to 1 at the other, is defined by a set of n+1 "control points" (X(i), Y(i), Z(i)) for i = 0 to n. P(u) = Sum i=0..n [(X(i), Y(i), Z(i)) * B(i, n, u)] B(i, n, u) = C(n, i) * u^i * (1-u)^(n-i) C(n, i) = n!/i!/(n-i)! A Bezier curve (or surface) is defined by its control points, which makes it invariant under any affine mapping (translation, rotation, parallel projection), and thus even under a change in the axis system. You need only to transform the control points and then compute the new curve. The control polygon defined by the points is itself affine invariant. Bezier curves also have the variation-diminishing property. This makes them easier to split compared to other types of curve such as Hermite or B-spline. Other important properties are multiple values, global and local control, versatility, and order of continuity. [What do these properties mean?] (1996-06-12)

Wikipédia

Lenstra elliptic-curve factorization

The Lenstra elliptic-curve factorization or the elliptic-curve factorization method (ECM) is a fast, sub-exponential running time, algorithm for integer factorization, which employs elliptic curves. For general-purpose factoring, ECM is the third-fastest known factoring method. The second-fastest is the multiple polynomial quadratic sieve, and the fastest is the general number field sieve. The Lenstra elliptic-curve factorization is named after Hendrik Lenstra.

Practically speaking, ECM is considered a special-purpose factoring algorithm, as it is most suitable for finding small factors. Currently, it is still the best algorithm for divisors not exceeding 50 to 60 digits, as its running time is dominated by the size of the smallest factor p rather than by the size of the number n to be factored. Frequently, ECM is used to remove small factors from a very large integer with many factors; if the remaining integer is still composite, then it has only large factors and is factored using general-purpose techniques. The largest factor found using ECM so far has 83 decimal digits and was discovered on 7 September 2013 by R. Propper. Increasing the number of curves tested improves the chances of finding a factor, but they are not linear with the increase in the number of digits.

Como se diz elliptic curve cryptosystem em Russo? Tradução de &#39elliptic curve cryptosystem&#39 em